

NYLON RESIN

Zytel® FG70G30HSR2 BK309 is a 30% Glass Reinforced, Heat Stabilized, Polyamide 66

	٠.	_	-1	ct		•				_	11.	٠.	_
_	r	$\overline{}$	~	 \sim 1	 n	۱т	$\overline{}$	r	m	\sim	TI	\sim	n

Resin Identification Part Marking Code ISO designation	PA66-GF30 >PA66-GF30< ISO 16396-PA66	o,GF30,M1CGHRW,S14-100	ISO 1043 ISO 11469
Rheological properties	dry/cond.		
Viscosity number	158/*	cm³/g	ISO 307, 1628
Moulding shrinkage, parallel	0.2/-	%	ISO 294-4, 2577
Moulding shrinkage, normal	1.0/-	%	ISO 294-4, 2577
Typical mechanical properties	dry/cond.		
Tensile modulus	10000/7000	MPa	ISO 527-1/-2
Tensile stress at break, 5mm/min	200/130	MPa	ISO 527-1/-2
Tensile strain at break, 5mm/min	3.3/5	%	ISO 527-1/-2
Charpy impact strength, 23°C	70/80	kJ/m²	ISO 179/1eU
Charpy notched impact strength, 23°C	12/15	kJ/m²	ISO 179/1eA
Poisson's ratio	0.34/0.35		
Thermal properties	dry/cond.		
Melting temperature, 10°C/min	263/*	°C	ISO 11357-1/-3
Glass transition temperature, 10°C/min	75/20	°C	ISO 11357-1/-3
Temperature of deflection under load, 1.8 MPa	250/*	°C	ISO 75-1/-2
Temperature of deflection under load, 0.45 MPa	260/*	°C	ISO 75-1/-2
Vicat softening temperature, 50°C/h 50N	209/*	°C	ISO 306
Coefficient of linear thermal expansion (CLTE), parallel	28/*	E-6/K	ISO 11359-1/-2
Coefficient of linear thermal expansion (CLTE),	95/*	E-6/K	ISO 11359-1/-2
normal			
Thermal conductivity of melt	0.22	W/(m K)	ISO 22007-2
Effective thermal diffusivity, flow	6.85E-8	m²/s	ISO 22007-4
Specific heat capacity of melt	2220	J/(kg K)	ISO 22007-4
RTI, electrical, 0.75mm	130	°C	UL 746B
RTI, electrical, 1.5mm	130	°C	UL 746B
RTI, electrical, 3.0mm	130	°C	UL 746B
RTI, impact, 0.75mm	120	°C	UL 746B
RTI, impact, 1.5mm	120	°C	UL 746B
RTI, impact, 3.0mm	120	°C	UL 746B
RTI, strength, 0.75mm	130	°C	UL 746B
RTI, strength, 1.5mm	130/*	°C	UL 746B
RTI, strength, 3.0mm	130	°C	UL 746B

Printed: 2025-05-29 Page: 1 of 6

NYLON RESIN

Flammability	dry/cond.
--------------	-----------

Burning Behav. at 1.5mm nom. thickn.	HB/*	class	IEC 60695-11-10
Thickness tested	1.5/*	mm	IEC 60695-11-10
UL recognition	yes/*		UL 94
Burning Behav. at thickness h	HB/*	class	IEC 60695-11-10
Thickness tested	0.71/*	mm	IEC 60695-11-10
UL recognition	yes/*		UL 94
Oxygen index	24/*	%	ISO 4589-1/-2
FMVSS Class	В		ISO 3795 (FMVSS 302)
Burning rate, Thickness 1 mm	<80	mm/min	ISO 3795 (FMVSS 302)

Electrical properties dry/cond.

Volume resistivity >1E13/- Ohm.m IEC 62631-3-1 Surface resistivity */1E13 Ohm IEC 62631-3-2

Physical/Other properties dry/cond.

Density 1370/- kg/m^3 ISO 1183 Density of melt 1200 kg/m^3

Injection

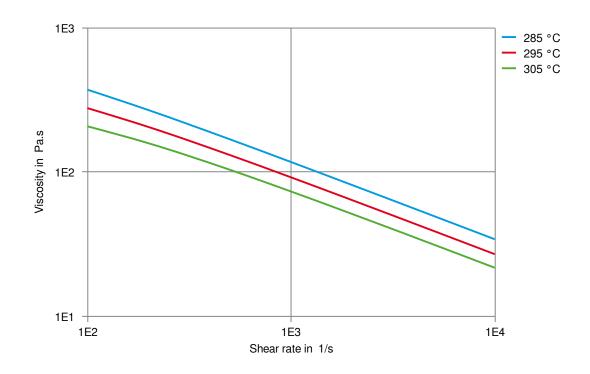
Drying Recommended	yes	
Drying Temperature	80	°C
Drying Time, Dehumidified Dryer	2 - 4	h
Processing Moisture Content	≤0.2	%
Melt Temperature Optimum	295	°C
Min. melt temperature	285	°C
Max. melt temperature	305	°C
Screw tangential speed	≤0.2	m/s
Mold Temperature Optimum	100	°C
Min. mould temperature	50	°C
Max. mould temperature	120	°C
Hold pressure range	50 - 100	MPa
Hold pressure time	3	s/mm
Ejection temperature	210	°C

Characteristics

Processing Injection Moulding

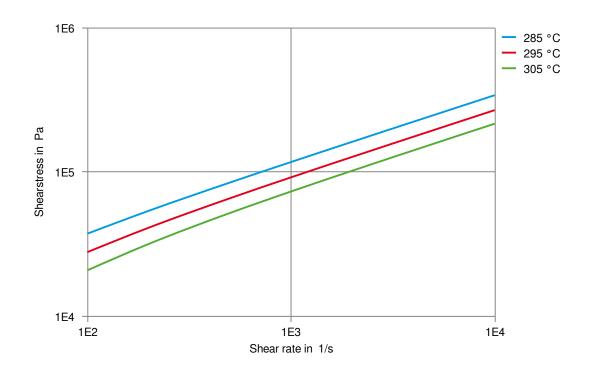
Delivery form Pellets

Additives Release agent


Special characteristics Heat stabilised or stable to heat, Hydrolysis resistant

Printed: 2025-05-29 Page: 2 of 6

Viscosity-shear rate



Printed: 2025-05-29 Page: 3 of 6

Shearstress-shear rate

Printed: 2025-05-29 Page: 4 of 6

(+) 18816996168 Ponciplastics.com

Zytel® FG70G30HSR2 BK309

Chemical Media Resistance

Acids

- ✓ Acetic Acid (5% by mass), 23°C
- ✓ Citric Acid solution (10% by mass), 23°C
- ✓ Lactic Acid (10% by mass), 23°C
- X Hydrochloric Acid (36% by mass), 23°C
- X Nitric Acid (40% by mass), 23°C
- X Sulfuric Acid (38% by mass), 23°C
- X Sulfuric Acid (5% by mass), 23°C
- X Chromic Acid solution (40% by mass), 23°C

Bases

- X Sodium Hydroxide solution (35% by mass), 23°C
- ✓ Sodium Hydroxide solution (1% by mass), 23°C
- ✓ Ammonium Hydroxide solution (10% by mass), 23°C

Alcohols

- ✓ Isopropyl alcohol, 23°C
- ✓ Methanol, 23°C
- ✓ Ethanol, 23°C

Hydrocarbons

- ✓ n-Hexane, 23°C
- ✓ Toluene, 23°C
- ✓ iso-Octane, 23°C

Ketones

✓ Acetone, 23°C

Ethers

✓ Diethyl ether, 23°C

Mineral oils

✓ Insulating Oil, 23°C

Salt solutions

- ✓ Sodium Chloride solution (10% by mass), 23°C
- ✗ Sodium Hypochlorite solution (10% by mass), 23°C
- ✓ Sodium Carbonate solution (20% by mass), 23°C
- ✓ Sodium Carbonate solution (2% by mass), 23°C
- ★ Zinc Chloride solution (50% by mass), 23°C

Other

- ✓ Ethyl Acetate, 23°C
- ✓ Hydrogen peroxide, 23°C
- ✓ Ethylene Glycol (50% by mass) in water, 108°C
- ✓ 1% nonylphenoxy-polyethyleneoxy ethanol in water, 23°C
- ✓ 50% Oleic acid + 50% Olive Oil, 23°C
- ✓ Water, 23°C
- ✓ Water, 90°C
- X Phenol solution (5% by mass), 23°C

Printed: 2025-05-29 Page: 5 of 6

Symbols used:

possibly resistant

Defined as: Supplier has sufficient indication that contact with chemical can be potentially accepted under the intended use conditions and expected service life. Criteria for assessment have to be indicated (e.g. surface aspect, volume change, property change).

not recommended - see explanation
Defined as: Not recommended for general use. However, short-term exposure under certain restricted conditions could be acceptable (e.g. fast cleaning with thorough rinsing, spills, wiping, vapor exposure).

Printed: 2025-05-29 Page: 6 of 6

Revised: 2025-04-23 Source: Celanese Materials Database

NOTICE TO USERS: Values shown are based on testing of laboratory test specimens and represent data that fall within the standard range of properties for natural material. These values alone do not represent a sufficient basis for any part design and are not intended for use in establishing maximum, minimum, or ranges of values for specification purposes. Colourants or other additives may processing conditions and environmental exposure. Other than those products expressly identified as medical grade (including by MT® product designation or otherwise), Celanese's products are not intended for use in medical or dental implants. Regardless of any such product designation, any determination of the suitability of a particular material and part design for any use contemplated by the users and the manner of such use is the sole responsibility of the users, who must assure themselves that the material as subsequently processed meets the needs of their particular product or use. To the best of our knowledge, the information contained in this publication is accurate; however, we do not assume any liability whatsoever for the accuracy and completeness of such information. The information contained in this publication should not be construed as a promise or guarantee of specific properties of our products. It is the sole responsibility of the users to investigate whether any existing patents are infringed by the use of the materials mentioned in this publication. Moreover, there is a need to reduce human exposure to many materials to the lowest practical limits in view of possible adverse effects. To the extent that any hazards may have been mentioned in this publication, we neither suggest nor guarantee that such hazards are the only ones that exist. We recommend that persons intending to rely on any recommendation or to use any equipment, processing technique or material mentioned in this publication should satisfy themselves that they can meet all applicable safety and health standards. We strongly recommend that users

© 2025 Celanese or its affiliates. All rights reserved. Celanese®, registered C-ball design and all other trademarks identified herein with ®, TM, SM, unless otherwise noted, are trademarks of Celanese or its affiliates. Fortron is a registered trademark of Fortron Industries LLC.